${ }^{1}$ For Input Registers, replace the $4 x x x x$ with a $3 x x x x$ in the below register address. The $3 x x x x$ are a mirror of the $4 x x x x$ Holding Registers.
${ }^{2}$ An attempt to exceed a limit will set the register to its high or low limit value.

REGISTER ADDRESS ${ }^{1}$	REGISTER NAME	$\begin{aligned} & \text { LOW } \\ & \text { LIMIT }^{2} \end{aligned}$	HIGH LIMIT 2	FACTORY SETTING	ACCESS	COMMENTS
40374	On Delay	0	32750	0	Read/Write	1 = 0.1 Second
40375	Off Delay	0	32750	0	Read/Write	1 = 0.1 Second
40376	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
40377	Reset	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
40378	Standby	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
40379	Lit - Annunciator	0	3	1	Read/Write	0 = Off, 1 = Normal, 2 = Reverse, 3 = Flash
Setpoint 3						
40381	Assignment	0	6	0	Read/Write	$0=$ None, $1=$ A-Rel, $2=\mathrm{A}-\mathrm{Abs}, 3=\mathrm{b}-\mathrm{Rel}, 4=\mathrm{bAbs}, 5=$ Calc, $6=$ Tot
40382	Action	0	10	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Ab}-\mathrm{HI}, 2=\mathrm{Ab}-\mathrm{Lo}, 3=\mathrm{AU}-\mathrm{HI}, 4=\mathrm{AU}-\mathrm{LO}, 9=$ totLo, $10=$ totHI
40383	Hysteresis	1	65000	2	Read/Write	1 = 1 Display Unit
40384	On Delay	0	32750	0	Read/Write	1 = 0.1 Second
40385	Off Delay	0	32750	0	Read/Write	1 = 0.1 Second
40386	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
40387	Reset	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
40388	Standby	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
40389	Lit - Annunciator	0	3	1	Read/Write	0 = Off, 1 = Normal, 2 = Reverse, 3 = Flash
Setpoint 4						
40391	Assignment	0	6	0	Read/Write	$0=$ None, $1=\mathrm{A}-$ Rel, $2=\mathrm{A}-\mathrm{Abs}, 3=\mathrm{b}-\mathrm{Rel}, 4=\mathrm{bAbs}, 5=\mathrm{Calc}, 6=$ Tot
40392	Action	0	10	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{Ab}-\mathrm{HI}, 2=\mathrm{Ab}-\mathrm{Lo}, 3=\mathrm{AU}-\mathrm{HI}, 4=\mathrm{AU}-\mathrm{LO}, 5=\mathrm{dE}-\mathrm{HI}, 6=\mathrm{dE}-\mathrm{LO}, 7=\mathrm{bANd}, \\ & 8=\mathrm{bNdln}, 9=\text { totLo, } 10=\text { totHI } \end{aligned}$
40393	Hysteresis	1	65000	2	Read/Write	1 = 1 Display Unit
40394	On Delay	0	32750	0	Read/Write	1 = 0.1 Second
40395	Off Delay	0	32750	0	Read/Write	1 = 0.1 Second
40396	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
40397	Reset	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
40398	Standby	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
40399	Lit - Annunciator	0	3	1	Read/Write	$0=$ Off, 1 = Normal, $2=$ Reverse, 3 = FlashSEE MODULE 7 FOR PARAMETER DESCRIPTIONS
SERIAL COMMUNICATIONS PARAMETERS						
40401	Type	0	2	2	Read/Write	$0=$ RLC Protocol (ASCII), 1 = Modbus RTU, $2=$ Modbus ASCII
40402	Baud Rate	0	7	7	Read/Write	$0=300,1=600,2=1200,3=2400,4=4.8 \mathrm{k}, 5=9.6 \mathrm{k}, 6=19.2 \mathrm{k}, 7=38.4 \mathrm{k}$
40403	Data Bits	0	1	1	Read/Write	$0=7$ Bits, $1=8$ Bits
40404	Parity	0	2	0	Read/Write	0 = None, 1 = Even, 2 = Odd
40405	Address	0	99	0	Read/Write	RLC Protocol: 0-99
		1	247	247		Modbus: 1-247
40406	Transmit Delay	0	250	10	Read/Write	$1=0.001$ Seconds
40407	Abbreviated Transmission (RLC only)	0	1		Read/Write	$0=$ No, $1=$ Yes (Not used with Modbus protocol)
40408	Print Options (RLC only)	0	63	0	Read/Write	$0=$ No, 1 = Yes (Not used with Modbus protocol) Bit 0 - Print Input A Value Bit $3-$ Print Max \& Min Values Bit 1 - Print Input B Value Bit 4 - Print Total Value Bit 2 - Print CALC Value Bit 5 - Print Setpoint Values
40409	Load Serial Settings	0	1	0	Read/Write	Changing 40401-40406 will not update the PAXDP until this register is written with a 1. After the write, the communicating device must be changed to the new PAXDP settings and the register returns to 0 .
	ANALOG OUTPUT PARAMETERS					SEE MODULE 8 FOR PARAMETER DESCRIPTIONS (APPLIES ONLY WHEN LINEAR OUTPUT CARD, PAXCDL IS INSTALLED)
40411	Type	0	2	1	Read/Write	$0=0-20 \mathrm{~mA}, 1=4-20 \mathrm{~mA}, 2=0-10 \mathrm{~V}$
40412	Assignment	0	8	0	Read/Write	$0=$ NONE, $1=\mathrm{A}-\mathrm{REL}, 2=\mathrm{A}-\mathrm{AbS}, 3=\mathrm{b}-\mathrm{ELL}, 4=\mathrm{b}-\mathrm{AbS}, 5=\mathrm{CALC}, 6=$ tot, $7=\mathrm{HI}, 8=\mathrm{LO}$
40413	Analog Low Scale Value (Hi word)	-19999	99999			
40414	Analog Low Scale Value (Lo word)	-19999	99999	0	Read/Write	Display value that corresponds with $0 \mathrm{~V}, 0 \mathrm{~mA}$ or 4 mA output
40415	Analog High Scale Value (Hi word)	-19999	99999	10000	Read/Write	Display value that corresponds with 10 V or 20 mA output
40416	Analog High Scale Value (Lo word)	-1999	100	0	Read/Write	$0=$ Max update rate, $1=0.1$ Second

REGISTER ADDRESS ${ }^{1}$	REGISTER NAME	$\begin{aligned} & \text { LOW } \\ & \text { LIMIT }^{2} \end{aligned}$	HIGH $\text { LIMIT }^{2}$	FACTORY SETTING	ACCESS	COMMENTS
FACTORY SERVICE						
40501	Factory Service Register	N/A	N/A	N/A	Read/Write	Factory Use Only - do not modify
40502	Factory Service Data Register	N/A	N/A	N/A	Read/Write	Factory User Only - do not modify
40503	Main Display Number	0	3	1	Read/Write	0 = Display _, 1 = Display A, 2 = Display B, 3 = Display C
40504	Power Up Errors	N/A	N/A	N/A	Read Only	Bit Cleared = No Error, Bit Set = Error Bit $0=\operatorname{Input} \mathrm{A}$ Hardware Error (ErInA) Bit 1 = Input B Hardware Error (Erlnb) Bit $2=$ Key Stuck at power-up Error (ErKEY) Bit 3 = Power Down Data Checksum Error (EEPdn) Bit 4 = Parameter Checksum Error (EEPar) Bit 5 = Calibration Data Checksum error (EECal) Bit 6 = Linear Output Card Calibration Checksum Data Error (EELin)
40505	Input A/B Error	N/A	N/A	N/A	Read Only	Bit Cleared = No Error, Bit Set = Error Bit $0=$ Input A Display Underflow (<-19999) Bit 1 = Input A Display Overflow (>99999) Bit $2=$ Input A Signal Underrange ($<13 \mathrm{~V}$ or $<-26 \mathrm{~mA}$) Bit $3=$ Input A Signal Overrange ($>13 \mathrm{~V}$ or $>26 \mathrm{~mA}$) Bit 4 = Input A Display Underflow (<-19999) Bit 5 = Input A Display Overflow (>99999) Bit $6=$ Input A Signal Underrange ($<13 \mathrm{~V}$ or $<-26 \mathrm{~mA}$) Bit $7=$ Input A Signal Overrange ($>13 \mathrm{~V}$ or $>26 \mathrm{~mA}$)
40506	Total \& Calculation Error	N/A	N/A	N/A	Read Only	Bit 0 = Calculation Display Underflow (<-19999) Bit 1 = Calculation Display Overflow (>99999) Bit 4 = Total Value Display Underflow (<-99999900) Bit $5=$ Total Value Display Overflow (>999999000)
41001-41010	Slave ID	N/A	N/A	N/A	Read Only	
41101-41116	GUID/Scratch	N/A	N/A	N/A	Read/Write	Reserved (for use in future Red Lion software)

