Selecting Industrial Control Transformers

To make the proper transformer selection, the load must be completely analyzed... which involves every electrically energized component in the control circuit.

All electromagnetic control devices have two current requirements; the first to energize the coil; the second to maintain the contact for a definite period of time. The initial energizing of the coil, which takes 5 to 20 milliseconds, requires many times more current than normal. This is referred to as volt-ampere inrush... which is immediately followed by the sealed volt-amperes-the amount of current required to hold the contact in the circuit.

Easy, five step selection

1. Determine the voltage and frequency of supply circuit: Example: 460 Volts, 60 Hz .
2. Determine the total inrush VA of the control circuits from the manufacturer's data or the contactor data table. Do not neglect the current requirements of indicating lights and timing devices that do not have an inrush VA but are energized at the same time as the other components in the circuit. Their total VA should be added to the total inrush VA.
3. Refer to the regulation data chart. If the supply circuit voltage (Step 1) is reasonably stable and fluctuates no more than $\pm 5 \%$, refer to the 90% Secondary Voltage column. If it fluctuates as much as $\pm 10 \%$, refer to the 95% Secondary Voltage column. Go down the column you have selected until you arrive at the inrush VA closest to, but not less than, the inrush VA of your control circuit.
4. Read to the far left side of the chart and you have selected the continuous nominal VA rating of the transformer needed. The secondary voltage that will be delivered under inrush conditions will be either $85 \%, 90 \%$, or 95% of the rated secondary voltage-depending on the column selected from the regulation data chart. The total sealed VA of the control circuit must not exceed the nominal VA rating of the transformer selected from the manufacturer's data or the contactor's data table.

TABLE 1. Inrush VA

Nominal VA Rating	Inrush VA @ 20\% \& 40\% Power Factor					
	85\% Secondary Voltage	90\% Secondary Voltage	95\% Secondary Voltage			
	$\mathbf{2 0 \%}$ P.F.	$\mathbf{4 0 \%}$ P.F.	$\mathbf{2 0 \%}$ P.F.	$\mathbf{4 0 \% ~ P . F .}$	$\mathbf{2 0 \%}$ P.F.	$\mathbf{4 0 \%}$ P.F.
50	362	224	289	179	217	134
75	579	354	462	283	345	211
100	839	522	664	413	489	304
150	1326	842	1003	637	679	431
250	3447	2281	2462	1629	1477	977
300	3894	2618	2812	1890	1731	1163
350	5418	3689	3870	2635	2322	1581
500	6496	4575	4691	3304	2887	2033
750	8377	5811	5913	4102	3449	2393
1000	11329	9005	7789	6191	4248	3377
1500	25519	18803	18013	13273	10508	7742
2000	28178	21600	19372	14850	10566	8100
3000	34797	28391	24562	20041	14328	11690
5000	138500	84542	100000	61058	61550	37574

TABLE 2. Typical Magnetic Motor Starter \& Contactor Data (1) 60 Hz, 120 Volt, 3-Pole

Contactor		N.E.M.A. Size								
		00	0	1	2	3	4	5		
Allen Bradley	500 Series	-	192	192	240	660	1225	$\begin{gathered} \text { A } \\ 2040 \end{gathered}$	$\begin{gathered} \mathrm{L} \\ 1490 \end{gathered}$	VA Inrush
		-	29	29	29	45	69	110	96	VA Sealed
	K Series	53	110	175	240	580	1000		950	VA Inrush
		15	20	22	31	43	65		98	VA Sealed
ASEA	Heavy Duty Series	85	85	100	150	490	900		200	VA Inrush
		9	9	11.5	15	35	55		65	VA Sealed
Furnas		218	218	218	218	310	957		518	VA Inrush
		25	25	25	25	26	75		116	VA Sealed
General Bectric		151	151	151	528	1152	1248		580	VA Inrush
		24	24	24	60	83	86		191	VA Sealed
Joslyn Cark		210	210	210	210	724	880		790	VA Inrush
		18	18	18	18	30	39		295	VA Sealed
Siemens-Allis (formerly ITE Gould)		76	76	76	194	365	530		630	VA Inrush
		12	12	12	21	35	40		110	VA Sealed
Square D		165	245	245	311	700	1185		970	VA Inrush
		33	27	27	37	46	85		212	VA Sealed
Westinghouse		160	160	160	160	625	625		700	VA Inrush
		25	25	25	25	50	50		180	VA Sealed
Outler Hammer (Citation Line)	A1 Series	87	103	103	-	-	-		158	VA Inrush
		15	20	20	-	-	-		100	VA Sealed
	B1 Series	102	103	103	140	390	1158		158	VA Inrush
		13	20	20	24	50	100		100	VA Sealed

5. Refer to the specification tables on the following pages to select a transformer according to the required continuous nominal VA and primary/secondary voltages.
(1) Data is most current at time of printing. Contact individual manufacturer for updates.
